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Does fuzzy ser theory apply to public administration? Or more
aptly, when does it not apply to public administration? William
A. Treadwell’s exploratory article moves us toward an under-
standing of the “fuzzy” world in which we work. A fuzzy set the-
ory orientation can bring together disparate theoretical interpreta-
tions and allow them to mutually co-exist as they are each
allowed to provide partial explanation of the phenomenon at
hand. Treadwell proposes a “fuzzy acceptance theory”, with
which a framework is provided for pulling rogether different theo-
retical perspectives that allows each perspective the ability to pro-

vide partial explanatory power for the issue at hand.
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Some very familiar constructs in the realm of public
administration discourse are supervisor-worker, teacher-
student, public-private, democracy-autocracy, conser-
vatism-liberalism, patronage-merit, individualism-collec-
tivism, and centralized-decencralized. These and other
constructs and theories in public management are ban-
tered abourt through iterations of paired comparisons of
contrasting relationships that are framed in a language of
dichotomous symbolism. Even when a construct does
not appear to lend itself readily to a bi-polar structure, it
will implicitly exist, as in the familiar constructs of repre-
sentation, efficiency, effectiveness, equity, and property;
in these examples the negative of the terms form the bi-
polar comparison point—no representation, no efficien-
cy, no effectiveness, no equity; no property.

Our temporal process is uniquely bi-polar (Kelly 1955;
Adams-Webber 1979; Rychlak 1981), where our con-
structs tend to be labeled by their similarity pole. When
we speak of what something means, we are always refer-
ring to a relationship between similarities and differences.
Kelly's personal construct theory is based on the notion
of a construing process where thought is only possible
because humans dichotomize experience into similarities
and conrasts, as our bi-polar nature. Personal construct
theory can be extended into an ontological case for fuzzi-
ness as presented by Kosko (1989) wherein: The universe
consists of all subsets of the universe. The only subsets of
the universe that are not fuzzy are the constructs of classi-
cal mathemartics. All other sets—sets of particles, cells,
tissues, people, ideas, galaxies—in principle conrain ele-
ments to different degrees. Their membership is partial,
graded, inexact, ambiguous, or uncertain. To the extent
that the human construes reality as sets of bi-polar con-
structs, the strength of any construct would then be based
on its membership gradient value at the time an event
occurs. The membership gradient of any construct is a
matter of perceived similarities and contrasts. At this
point, it may be best to stop and back up, because we
have the cart before the horse. Presenting an historical
introduction to logic and fuzzy theory will better orient
our frame of reference.
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Currencly in the United States, people who are over 30 years
of age were traditionally raised using a nonmetric system of
weights and measures—using terms such as feet, ounces, and
quarts. The younger generations have been raised using the
metric system of weights and measures of meters, grams, and
liters. The transition of the older generation to using the metric
system has not been very successful. The old ways are still thor-
oughly embedded in society. There is a split berween the con-
flicting institutionalized old way and the new. The same may
hold true in the coming years berween the use of classical ser
theory and the rise in the use of fuzzy set theory. Classical set
theory has a long documented history starting with Aristotle;
fuzzy theory is a mere child of the 1960s.

The dialogue berween the human sciences and fuzzy set the-
ory has been scattered, unsystematic, and slow to develop.
According to Smithson (1987) “...fuzzy set mathematics are
couched in foreign and rather obtuse notation which is forbid-
ding even to the more mathemarically sophisticated behavioral
scientist.” Virtually all texts on the topic assume either a math-
ematical or compurer science and engineering orientation.
Smithson’s book was an attempt to bridge the gap and lighten
the burden of the mathematics 1o illustrate the basic elements of
fuzzy set theory in real-world research examples taken from cog-
nitive psychology, social psychology, sociology, social anthropol-
ogy, political science, and evaluation research.

In the same spirit of Smithson, the goal of this expository
article on fuzzy theory is to minimize the obtrusion of math-
ematics and make the topic more palatable to a wider audience.
This initial paper sets out to provide some structure for han-
dling fuzzy concepts and illustrate their use in budgeting and
decision making.

Whar distinguishes fuzzy set theory from classical set theory?
According to classical set theory, an element either belongs to
one set or it belongs to another. In fuzzy set theory an element
may belong partially to a set. Fuzzy sets have gradations of set
membership and blurred boundaries. Classical theory has well
defined set boundaries and membership is as clear as black and
white. At issue is to which set does gray belong? Classical theo-
TSt may attempt to create a new set called gray; yet the problem
still persists. When does dark gray become black or conversely
when does light gray become white? The fuzzy-theory approach
neatly handles the assignment of gray as a partial member of
both the white and black sets. The darker the gray, the more it
tends to be a member of the set black and less 2 member of the
white set. The world of perception does not have sharp edges.
It is full of ambiguity and uncerrainty, and it is only reasonable
then to promote the use of fuzzy membership assignments.
One can begin to see that classical sets, using mutual exclusivity
as the defining operative, create boundaries that are acrually the
zones over which conflict reigns.

The Development of Formal Logic

Ir is important to understand the principles of logic in order
to grasp whar rational thought is. For one, it is not natural.
Rational thought is learned. then applied. There are many sys-
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tems of logic that have been developed in support of rational
though. In logical knowledge representations, facts, knowledge,
and rules are expressed in terms of predicates and logical sen-
tences. Parsaye and Chignell (1988) commented “formal logic
has been developed in spite of inherent tendencies of humans
toward irrational and emotional behavior often founded on
anything bur logic.” Part of the atrraction of formal logic is
that it acts as a counterweight to human irrationality. Parsaye
and Chignell suggested that that is why the formal mathemari-
cal ideals behind the economic thoughts and formulations of
supply and demand in a free market system still have appeal 1o
€Conomists.

Aristotle is generally considered to be the founder of logic.
The ancient Greeks used oratory to pur forward or refure argu-
ments in their process of public debate. Aristotle developed a
method called syllogistic logic for analyzing and evaluaring
arguments. An example of syllogistic logic, is the following syl-
logism: All men are mortal; Aristotle is a man; we then deduce
Aristotle is mortal. In syllogistic reasoning new information is
logically deduced from preceding information. In addirion,
when Aristotelian logic is used, it implies that everything can be
identified as belonging to one category or another. There are
no shades of gray; no conception of “partly” or “mostly”—
everything exists in mutually exclusive caregories.

A century following Aristotle, Chryssipus developed proposi-
tional logic as a method to understand compound propositions
(sentences) as either true or false depending upon their compo-
nents. A thousand years later William of Occam developed
modal logic during the 14th century. Modal logic includes con-
cepts such as possibility, necessity, belief, and doubt.

In 1854, Boole published An Investigation of the Laws of
Thought on Which are Founded the Mathematical Theories of
Logic and Probabilities. Boole translated the arithmetic opera-
tors of addition, multiplication, and subtraction and created
their logical set equivalents—the union operation by applying
the minimum rule, the intersection operation using the maxi-
mum rule, the connective “not” and the truth table.

Boolean logic was later codified into symbolic logic by Rus-
sell and Whitehead in Principia Mathematica, published in
1917. The foundation of formal logic is often artriburted to
Russell and Whitehead (Parsaye and Chignell, 1988). When
classical logic is applied to a set of variables containing argu-
ments and predicates thar create a clause to expose a fact, or
when a logical connecrive is made to form a compound clause,
the result is either true or false. There is no allowance for
uncertainty within the rules of a formal logic system. Formal
logic has many useful features, but it does not explicitly repre-
sent uncertainty in reasoning.

The approach to dealing with uncertainty in reasoning has
primarily been with the application of Baves theories of prob-
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ranging from not at all to a heavy downpour.

abilities. The Bayesian analysis uses a procedure which
assigns prior probabilities that an event(s) will occur, then
dara are collected, and these dara are then used to change the
prior probabilities, to yield posterior probabilities. This pro-
cess can be recursively applied to the re-occurring event and
continuously modify probabilities of an event(s) future
prospect to be realized. The key idea of Bayesian staristics is
prior opinions are changed by dara to yield posterior opinions
(Phillips, 1973). All uncertainties are stated as percentage of
likelihood that something will occur. For example, while lis-
tening to the radio broadcaster reading the news, he
announced...“there is a 10 percent chance of rain today.”
Then he spontaneously adjusted his script, “and ic’s 10 per-
centing right now.” Probability does not help in determining
to what extent an event is actually occurring, other than stat-
ing 100 percent. The measurement of how heavy it is raining
is a fuzzy measurement ranging from not at all to a heavy
downpour.

The Foundation of Fuzzy Set Theory

Jan Lukasiewicz, a Polish mathematician during the 1920s,
developed the basic idea of multivalued logic. Forty years later
in 1965, it was expanded upon and called Fuzzy Theory by
Lotfi A. Zadeh. Zadel's first paper, “Fuzzy Sets” (1987), intro-
duces the fuzzy set and the mathematical definidons of inclu-
sion, union, intersection, compliment, relation and convexity as
a derivative of Boolean logic (Appendix A). Later work by
Zadeh employs fuzzy logic with the purpose of modeling how
people reach conclusions when the information available is
imprecise, incomplete and not tortally reliable. Such modeling
is approached by the interpretation of natural language through
the representational mechanisms of fuzzy sets and possibility

theory.

While the foundations of fuzzy set theory are not debated,
there is controversy over the applications of fuzzy theory to real
world events. Fuzzy set theory is not the panacea for dealing
with the world of uncertainty in certain terms, but it is a strong
contender. Smithson (1987) notes:

The principal value I find in fuzzy set theory is that it
generates alternacives to traditional methods and
approaches, thereby widening the range of choices avail-
able to researchers. The more alternatives we have, the
more possible it becomes to conduct high quality
research, and the fewer excuses we have for taking
default options. The more sophisticated our linguistic
and conceprual frameworks, the less likely we are to triv-
ialize or distort our questions in the name of mere
tractabilicy.

Fuzzy theory does not use probabilities nor view any situa-
tion’s uncertainty as due to randomness. Fuzzy theory handles
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uncertainty as deterministic. Where Bayesian theorists see
probabilities, fuzzy theorists see different amounts of member-
ship in events that are not probable bur as real events. When
one sets out to make a set of inferences or predictive statements,
they are predicated on prior descriptions that embellish various
levels of cerrainty regarding occurrence, which are deterministic
in their origination. There is nothing random nor probable
when you measure such information. As Kosko (1989) has
noted:

This count does not involve randomness. It counts
which elements are identical or similar and to what
degree. The phenomena themselves are dererministic.
The corresponding frequency number that summarizes
the deterministic situation is also deterministic. The
same situation always gives the same number. The
number may be used also to place bets or to switch a
phone line, but it remains part of the description of a
specific state of affairs. The deterministic subsethood
derivation of relative frequency eliminates the need to
invoke an undefined ‘randomness’ to further describe
the situation.

The hundred years of effort to building probability theory
into a descriptive universe had been challenged by the fuzzy
theory approach. After Kosko (1989) presented a new geomet-
ric proof of The Fuzzy Subsethood Theorem, he illustrated that
fuzzy theory is an extension of probability theory—and in par-
ticular, Bayes Theorem. Probabilicy is a special case of fuzziness,
where Bayesian theory is subsumed into fuzzy theory as a spe-
cial subser.

Fuzzy logic allows one to express uncertainty within a rule—
inexact reasoning system—such thar a fuzzy logic conclusion is
not stated as either true or false, but as being possibly true o0 a
certain degree. The degree of certainty is called the “truth

value.” Fuzzy set theory uses only the numeric interval of 0 to
1:

FALSE: Truth Value = 0
TRUE : Truch Value = 1
UNCERTAIN: 0 < Truth Value < 1

Often dealing with uncertainty, we are not completely sure
of a fact, but we have reason to believe that it is “possibly” true.
The possibility is one with the term fuzziness used to describe
event ambiguity. In contrast to other measures, it measures the
degree to which an evenrt occurs, not whether it occurs.
Whether an event occurs is “random.” To the degree it occurs
is fuzzy. Fuzziness depicts these relationships in a sets-as-points
perspective. A fuzzy set is a point in a unit hypercube and a
nonfuzzy set is a corner of the hypercube. The fuzzier A is, the
closer A is to the midpoint in the fuzzy cube. As A approaches a
vertex the less fuzzy it is (or more like the vertex than not). The
Rubik’s cube is a good metaphor for understanding the fuzzy
sets-as-points hypercube orientation. The corners of the Rubik’s
cube represent the defined values of traditional Aristotelian
logic, whereas the points inside the cube correspond to fuzzy
logic sets. Visualizing this geometry may by iwself be the more
powerful argument for fuzziness (Appendix B).



Linguistic Variables, Quantifiers, and Hedges

If we remove one stone from a large pile, the pile remains
large. Reapplying this concept over and over will ultimately lead
to a pile with just one stone. When does a large pile become a
small pile? If you start with the largest known organization,
and remove one employee at a time from it, when does it
become a small organization? Both the pile’s transition and the
organization’s transition occur within the looseness allowed by
the vague and inexactness of the word “large.” “Large” is a
fuzzy concept. The concepts “appearance” and “young” are also
examples of fuzzy concepts.

Compatibility is distinct from that of probability. According
to Zadeh, compatibility is merely a subjective indication of the
ability of one’s conception of a label to describe accurately a
particular value. Zadeh explained the ideas of fuzzy quantifiers
such as “few,” “seldom,” “usually,” “often,” “many,” and
“rarely,” to imply a fuzzy numeric value, such as “I often drive
that route” or “I frequently drive by myself.”

Smithson (1987) conducted research on numeric fuzzy values
associated with the fuzzy quantifier “several.” He asked 23 stu-
dents to rate the degree of possibility that various integers could
be the number someone has in mind when they say several. His
results indicated a fair consensus on the matter. Zetenyi’s (1988)
review indicated that quantifiers, such as several, are very much
affected by context. The expected frequency of the event, the
type of activity, the set size described, and the range of alterna-
tive quantifiers available can each affect qualifiers.

Hormann (1983) experimentally illustrated that contextual
situations influence the amount indicated by a quantifier. For
example the quantifier “few” changes in the following contextu-
al situations:

¢ By object—a few crumbs means more than 8 whereas 4
few shirts means approximately 4.

¢ By size of object—a few large cars suggest a smaller num-
ber than a few small cars.

+ By spatial location—a few people standing in front of a hut
is not as many as & few peaple standing in front of a build-
ing.

Hence the range of quantifiers is determined by what other
quantifiers are available; therefore the sets indicated by quanti-
fiers must be able to expand and contract according to the con-
text in which they occur. The important regularity Zetenyi
noted for building a model of quantifiers is “a complex but
coherent conceptualization: quantifiers can be characterized as
fuzzy sets located in fixed order along an analogue scale. The
size of the set is variable, and some quantifiers are more mobile
than others in their position along this scale.” He described a
model of fuzziness embedded within fuzziness.

Zadeh identified another set of natural language words that
he referred to as “linguistic hedges.” Examples of some hedge
words are “very,” “quite,” “moderately,” “more or less,” “some-
what,” “rather,” and “sort of.” Hedge words either increase or
decrease linguistic variables. To illustrate hedges, consider the
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statement, “John is essentially decent.” “Decent” is a linguistic
variable that can take on components such as “kind,” “honest,”
« . » « M » £19 . - M M .

polite,” and “artractive.” The word “essentially” is a linguistic
hedge. Analyze the following statement, “bureaucracies are
rarely efficient.”

Fuzzy Social System Models

Kaufmann and Gupta (1988) believe classical models, which
have worked well for simple and isolated natural phenomena,
are not necessarily suited to explore contemporary problems
with their complexity, interactions, and human subjectiviry.
Deterministic and probabilistic mathematical tools have been
developed in the conventional systems theory that obey the
well-defined physical laws such as Newton’s laws of motion and
gravitation and Ohm’s law for electrical circuits in mechanical
systems. According to Kaufmann and Gupta, attempts to
extend these system-theory models to such systems as biological
processes and socio-economic processes, to a large extent, have
provided no benefits.

Kaufmann and Gupra (1988) have adapted current system
theory models into the context of fuzzy system models. Kauf-
mann and Gupta’s method for zero-base budgeting used a spe-
cial class of fuzzy numbers known as triangular fuzzy numbers
(TEN; see appendix C for more detail). Zero-base budgeting
works on the premise that each new year’s budget has to be jus-
tified on the perceived need for each program within every
department, division, and agency at any funding level. As is
true with any type of budgeting process, it is difficult to develop
a precise budget. For this reason, the use of fuzzy data rather
than the deterministic-numeric approach may produce more
realistic results.

In Kaufmann and Gupta’s model, each decision center in an
organization submits one or more budgets based on different
operating premises and goals. Every budget is summarily pre-
sented in the context of three outcomes: a minimal budget, a
normal budget, and an improvement budget. Each budget can
then be represented as an interval of confidence with lower and
upper thresholds. Kaufmann and Gupta’s example used a com-
pany with four decision centers that submitted 12 budgets: two
centers submitted three budgets, one center provided two bud-
gets and the fourth center presented four budgets. Using fuzzy
set theory, it can be illustrated which combinatory set(s) of
cumulative budgets can be adopted without restriction or
adopted with minimal risk or even high risk to the organiza-
tion, all within the constraints of the organization’s upper

threshold of funding.

While the fuzzy zero-base budget model separated sets of
cumulative budgets between being acceprable without risk and
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acceptable with different possible levels of risk to the organiza-
tion, it did not produce information necessary to determine
which cumulative budget ultimately to adopt. Which of the six
is to be chosen? The Kaufmann and Gupta paper did not move
into the process of how one would pick one budget from
among the six—such an objective was beyond the scope of their
paper. Another set of criteria and operations are needed to pro-
vide the final decision information beyond the total dollar
amount provided by the budgets. As Kaufmann and Gupta
(1988) stated in the introduction of ctheir work, “fuzzy opti-
mization is a process which seeks a good solution without being
able to prove that it is the best (optimum). However, in the real
world, it is difficult to decermine what is meant by the best.”
Difficult or not, one of the six zero-base budgets must be adopt-
ed, which one will it be?

Fuzzy Decision Making

Yager’s (1980) technique for multi-objective decisions may
be appropriate in determining which fuzzy-derived zero-base
budget to accept. Yager's (1980) position was decision makers
do not have a set of multi objectives which always meer all of
the desired requirements. As such, the situation is not one
which a particular set of objectives will satisfy the decision
maker completely, although each of the decision sets will pro-
vide a certain degree of satisfaction to the decision maker. Yager
formulated some ideas on how to evaluate alternatives under
these conditions. He illustrated the fuzzy decision process wich
the example of how to go about selecting a candidate for a job.

Yager employed a two-step process that used both the fuzzy
set minimum rule and maximum rule. To chose among candi-
dates, the process first aligned candidates according to their
weakest evaluated attribute regardless of the objective criteria.
Once the weakest attribute had been exposed among all candi-
dates, the strongest appearing candidate with the least weakness
was then selected.

Yager next moved the current decision-making process of
selecting 2 candidate to another level of complexity by stating
that the decision conditions were not of equal importance. The
addition of relative levels of importance among the criteria
translates into a hedge function. Each candidate’s evaluation is
mulciplied by the respective weights to create a weighted matrix.
Next the selection process returns to the two step minimum-
maximum fuzzy set decision process.

Translating Yager's example into terms for selecting a single
zero-base budget, recall where we left in our example: six bud-
gets were found to be within acceptable organizational levels of
tisk, and they each met the constraints of the upper limits of
funding for the organization. Hence the budget to be adopted
must be the one that will make the organization successful. Suc-
cess is derived from the goals or the mission statement of the
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organization. In this example “success” is the operative word
that the fuzzy analysis will hinge upon. The ser of multi-objec-
tive constructs are the programs within departments ijthc
organization. Each department in the organization is then eval-
uated on two atributes. First, a variable is assigned based on
the department’s perceived ability to fulfill its stated objective
within its budger, and second, a hedge function of how impor-
tant each specific department’s contribution is to the overall
success of the organization. The resulting matrix can then be
resolved using the two step minimum-maximum fuzzy set deci-
sion process.

Problems with Fuzzy Theory

This process may not always be capable of deciding upon
which alternative an organization should select. Therefore the
application of the fuzzy decision model may not always lead to
a conclusive result.

Kickert's (1978) critical review of fuzzy decision making,
concluded two problems exist in fuzzy set theory, “namely the
problem of semantics of fuzzy sets (that is, how to ensure that
the fuzzy sets used really represent the meaning that people
attach to them), and secondly the methodological aspects of
fuzzy set theory, (that is, what the methodology of science has
to say about this new, rapidly advancing theory).”

Fuzzy sets use a closed scaling system with values that range
between [0,1] to describe gradual membership functions. The
assignment of any value or evaluation level of membership is
exposed to subjective judgment. This classical problem,
though, becomes minimized because one of the strengths with
fuzzy set theory is the emphasis that objectives and constraints
can be represented by relationships which subsume elements of
subjective preference. Fuzziness in assignment is okay, and it is
natural. Fuzzy theory frees up the need of applying the classical
constraint of exactness to fit rigid categorical assignments.

Mathematics of fuzzy sets is not “logical” from the perspec-
tive of the rational theoretical models, and it is not subjectable
to the optimitizing and maximizing assumptions in micro-eco-
nomics; fuzzy modeling is not applicable to Pareto optimality.
Fuzzy optimization does not purport to distinguish the best
solution buc seeks a good solution. When caught up in a world
driven by conceprs with perceived needs {or mandated require-
ments) to increase efficiency and productivity and lower costs
by fine tuning the processes used to convert resources to out-
puts, the use of fuzzy theory could be an unsettling notion. Effi-
ciency and productivity may have to give way to looser fitting
criteria and allow more tolerance in a fuzzy perspective.

It has been said that fuzzy theory and its mathematical appli-
cations are not as easily applied as the more commonly used
concepts from general linear models based on means, standard
deviations, and standard errors. But this problem is possibly a
matter of reflection on the predisposition of having institution-
alized the framing of issues in an Aristotelian style of logic.
Changing the frame of reference may make the application of
fuzzy set theorv to problems just as easy as using the concepts in
general linear models.



Fuzzy Acceptance Theory

Bernstein (1976) stated, “an adequate comprehensive politi-
cal and social theory must at once be empirical, interprerarive,
and critical.” Can a fuzzy set theory orientation provide such
comprehensiveness? The premise for fuzzy acceprance theory to
be endorsed by public managers rests in their acceprance of (a)
possibilicy measurement, (b) use of graded membership in sets
to indicate levels of certainty, (c) an application to which events
are incerpreted as deterministic, and (d) the fuzzy set collaries
(see Appendix A) are operative.

Kosko’s (1989) n-dimensional hypercube is the model that
can start to bring together what appears to be differing points of
view or disconnected perspectives that have in the past been
referred to as a process of dialecrical conflict berween thesis and
antithesis. Facts and values do not have to be dichotomous, nor
stored in mutually exclusive categories. The fuzzy acceprance
theory metaphor implies the thesis, antithesis, synthesis, old
paradigm and new paradigm co-exist where each entity is
accountable for presenting, describing, and contributing the
facts and values within their unique scope. If old, or antiquat-
ed, ideas cannot co-exist with the new, the future can fall victim
of recreating the past. Just because the model to live by social-
ism as created in the Soviet Union’s version of communism has
dissolved does not dismiss the ideology.

The fuzzy acceprance theory can be used to understand the-
oretical constructs such as organizations, democracy, voting,
public and private, effectiveness, and efficiency to name but a
few of the primary public administrative constructs.

Gareth Morgan (1983) commented in his book, Beyond
Method, that “social scientists deal with possibilities. They are
concerned with the realization of possible knowledge, since
what is studied and what is learned are intimately connected
with the mode of engagement adopted.” The mode of engage-
ment Morgan referred to is any of the many modes of research
as practiced among social scientists. To say any one engage-
ment is better than the other requires an independent point of
reference against which the nature and claims of the different

research strategies can be assessed. Morgan argued that such a
reference point does not exist.

It is fallacious to conclude that the propositions of a sys-
tem of thought can be proved, disproved, or evaluated
on the basis of axioms within thar system, since the pro-
cess becomes self-justifying. Which means it is not pos-
sible to determine the validity or contribution of differ-
ent research strategies in any absolute sense in rerms of
evaluative stances that draw on the same assumptions as
do any of the research strategies examined.

An underlying property of fuzzy set theory is the interprera-
tion of events as being deterministic, not random, whose fuzzy
nature of measuring is of possibilities that represent certainty.
A fuzzy acceprance theory orientation could provide Morgan’s
(1983) “independent point of reference necessary to avoid the
problem of self-justifying claims.” The fuzzy acceprance theo-
ry position would not pit one engagement against another in
duals to be labeled the “right” research technique or the “right”
theory, but instead share how each research technique has
power to partally explain phenomenon. Cumulatively more
can be explained and understood. Thart which is left unex-
plained, or in a confused state, is an indicator of the need for
more n-dimensions to be established.

What we touch is the center of earnest effort as Morgan
(1983) said, “The whole history of epistemology can be inter-
preted as hinging on the quest for certainty in our way of know-
ing.”

D
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Appendix A
Fuzzy Set Properties

The algebraic properties—commurarivity, associativity, distribu-
tivity and complimentation—of fuzzy sets are the same as for ordinary
sets (i.e., binary sets with the two elements “0” and “17) using
Boolean logic. The rules for intersection and union and compliment
are the same. The primary difference in properties berween ordinary

sets logic and fuzzy sets logic are the properties of noncontradiction
and exclusion.

ANB = BnA

AUB = BUA

(ANB)NC= ANBNC)
(AUB)UC = Au(BUC)
AN(BUC) = (ANB)U(ANC)
AUBNC) = (AUBYNALC)

+  The universe of elements in fuzzy set theory is any number
in a closed interval from 0 to 1.

* Commutativity:
. Associativity:

+  Distuibutviey:

« A fuzzy set has a membership function with not only values
of 0 (does not belong to) or 1 (belongs to), but any number in che
interval 0 and 1 (For example, 0.3, 0.651, 0.98...chart represent
grades of membership.)
*  The following two fuzzy sets (A,B) are used to illustrace.
A={7 40521
B={3 149 01

. Intersection of A and B uses the minimum rule of selecting
the smaller of the two elements

ANB={3 40.5 01}

XS Union of A and B uses the maximum rule of selecting the
larger of the two elements

AUB={7 149 21

. The compliment of A (not A) is 1 minus the member in A:

Ac={3 61.5.80

. Kosko (1989) reported “fuzziness arises from the ambiguiry
berween a thing A and its opposite A< (not A).” If we do not know
A with cerrainty, we do not know A< with certainty eicher. Else by
double negation we would know A with cerrainty. This produces
nondegenerate overlap: ANAC does not equal the null ser, which
breaks the “law of noncontradiction.” Equivalently, this also pro-
duces nondegenerate underlap: AUAS does not equal X, which
breaks the “law of excluded middle.” Here X is the ground set or
universe of discourse. These laws are never broken in probabilistic
or stochastic logics—P(A and A¢) = 0 and

P(A or A¢) = 1—even though they are
broken with many, perhaps most, human utrerances.

+  The intersecrion of A and its compliment is not necessarily
the null set as defined in classical set theory. Using the minimum
rule the intersection is

ANAc =13 40 .5 .20}

¢ The union of A and its compliment is not necessarily the
empty set as defined in classical set theory. Using the maximum
rule the union is

AVAc={7 6 1.5 8 1}

Appendix B
Geometry of Fuzzy Sets: Sets as Points

Kosko’s (1989) geometry of fuzzy sets as sets-of-points in a
fuzzy square is presented. The geomerry of fuzzy sets involves
both the domain X = {x;,...x»} and the range [0,1]. A fuzzy setisa
point in a cube. In the diagram below, the fuzzy subset A is a
poine in the unic 2-cube with coordinates or fit values (1/3 3/4).
The first element x, fits in or belongs to A to degree 1/3, the cle-
ment x, to degree 3/4. The cube consists of all possible fuzzy sub-
sets of two elements {x;,%,}. The four corners represent the power
set 2x of {x,x:}.

Proposition: A is propetly fuzzy if and only if AMAc= 0 and if
and only if AUA® =X

Fuzzy Set Theory Movement in the Social Sciences

x2} =0, 1) x=(1, 1)
A I: l: AUA-
7 S + ...... S
4 |ommoe- o FO—
ANAc : :Ac
0=(0,0) /3 213 x1}=(1,0)



Appendix B (Continued)

An illustration of this fundamental proposition is what we might call completing the fuzzy square. Consider the two-dimensional fuzzy set A
defined to the fit vector (1/3 3/4). The corresponding overlap and underlap sets can be found by first finding the compliment set A< and then

combining the fit vectors pairwise with minimum and maximum rules:

A =(1/33/4)
Ac=(2/3 1/4)
ANAc = (1/3 1/4)
AUAc = (2/3 3/4)

The sets-as-points view shows that these four points in the unit square hang together, indeed move together, in a very natural way as illus-
trated in the above diagram. The fuzzier A is the closer A is to the midpoint of the fuzzy cube. As A approaches the mid-point, all four
points—A, A¢, ANAS, AUA“—contract to the midpoint. The less fuzzy A is, the closer A is to the nearest vertex. As A approaches a vertex, all

four points spread out to the four vertices.

Appendix C
Triangular Fuzzy Numbers (TFNs)

This appendix is not the definitive treatment of Triangular Fuzzy
Numbers (TFN), but it is a review of the most important properties
of these numbers in support of the discussion in this paper. Refer 1o
Kaufmann and Gupra (1988) for detailed treatment of which the fol-
lowing is excerpted.

A special class of fuzzy numbers called triangular fuzzy numbers is
illustrated in the figure below.

The Y axis indicates the level of membership (whose range is the
fuzzy ser [0,1]). The X-axis represents what has been measured. Tri-
angular fuzzy numbers are defined as a tripler (a;,a5,2;) within an

interval of confidence and has a membership function defined by four

paramerers:

uA(x) is 2 membership funcrion for the element x with respect to

the fuzzy subset A.

uAx) = 0 when x <3
uA(x) = x-a;/ay-a; when a; <= X <= 2,
uA(x) = as-x/az-a; when a; <= x <=2
uA(x) = 0 when x> 1.

The incerval of confidence represents differing levels of certainty—

Figure C1
A Triangular Fuzzy Number (TFN) A = (a,, a,, a;).

another often used term is possibilicy. The interval of confi-
dence at level alpha follows:

A= [(ara)a +ay, - (a3-a)0 + ay].

75 JEREA

.50 /

N

The interval of confidence at alpha designares the
amount of membership along either the increasing or
decreasing slopes in the figure above. When alpha = 1, then
the membership function is at most upper point at a,, while
when alpha = 0 the membership function can be either ar al
or a;.

In passing, another useful class of fuzzy numbers is the
trapezoidal fuzzy aumber (TrFN) that can be represented by
A=(a,,35,a3,:2¢). In the case of TrFn, when the membership
function of alpha = 1, rather than being a point as in TFNs,
there is a flat line interval (a,,a;) while at a; and a4 (the lower
and upper thresholds) are equal to zero. The four points
form a trapezoid area when plotred. TrFN hold similar
properties as defined by TFNs and the mathematics involved

are similar.

98

Public Administration Review o January/February 1993, Vol. 55, No. 1



